807 research outputs found

    A new approach to the vakonomic mechanics

    Get PDF
    The aim of this paper is to show that the Lagrange-d'Alembert and its equivalent the Gauss and Appel principle are not the only way to deduce the equations of motion of the nonholonomic systems. Instead of them, here we consider the generalization of the Hamiltonian principle for nonholonomic systems with nonzero transpositional relations. By applying this variational principle which takes into the account transpositional relations different from the classical ones we deduce the equations of motion for the nonholonomic systems with constraints that in general are nonlinear in the velocity. These equations of motion coincide, except perhaps in a zero Lebesgue measure set, with the classical differential equations deduced with d'Alembert-Lagrange principle. We provide a new point of view on the transpositional relations for the constrained mechanical systems: the virtual variations can produce zero or non-zero transpositional relations. In particular the independent virtual variations can produce non-zero transpositional relations. For the unconstrained mechanical systems the virtual variations always produce zero transpositional relations. We conjecture that the existence of the nonlinear constraints in the velocity must be sought outside of the Newtonian model. All our results are illustrated with precise examples

    On the use of blow up to study regularizations of singularities of piecewise smooth dynamical systems in R3\mathbb{R}^3

    Get PDF
    In this paper we use the blow up method of Dumortier and Roussarie \cite{dumortier_1991,dumortier_1993,dumortier_1996}, in the formulation due to Krupa and Szmolyan \cite{krupa_extending_2001}, to study the regularization of singularities of piecewise smooth dynamical systems \cite{filippov1988differential} in R3\mathbb R^3. Using the regularization method of Sotomayor and Teixeira \cite{Sotomayor96}, first we demonstrate the power of our approach by considering the case of a fold line. We quickly recover a main result of Bonet and Seara \cite{reves_regularization_2014} in a simple manner. Then, for the two-fold singularity, we show that the regularized system only fully retains the features of the singular canards in the piecewise smooth system in the cases when the sliding region does not include a full sector of singular canards. In particular, we show that every locally unique primary singular canard persists the regularizing perturbation. For the case of a sector of primary singular canards, we show that the regularized system contains a canard, provided a certain non-resonance condition holds. Finally, we provide numerical evidence for the existence of secondary canards near resonance.Comment: To appear in SIAM Journal of Applied Dynamical System

    Integrability, degenerate centers, and limit cycles for a class of polynomial differential systems

    Get PDF
    AbstractWe consider the class of polynomial differential equations x˙ Pn(x,y)+Pn+1(x,y)+Pn+2(x,y), y˙=Qn(x,y)+Qn+1(x,y)+Qn+2(x,y), for n ≥ 1 and where Pi and Qi are homogeneous polynomials of degree i These systems have a linearly zero singular point at the origin if n > 2. Inside this class, we identify a new subclass of Darboux integrable systems, and some of them having a degenerate center, i.e., a center with linear part identically zero. Moreover, under additional conditions such Darboux integrable systems can have at most one limit cycle. We provide the explicit expression of this limit cycle

    On the Dynamics of the Unified Chaotic System Between Lorenz and Chen Systems

    Get PDF
    PublishedA one-parameter family of differential systems that bridges the gap between the Lorenz and the Chen systems was proposed by Lu, Chen, Cheng and Celikovsy. The goal of this paper is to analyze what we can say using analytic tools about the dynamics of this one-parameter family of differential systems. We shall describe its global dynamics at infinity, and for two special values of the parameter a we can also describe the global dynamics in the whole ℝ3 using the invariant algebraic surfaces of the family. Additionally we characterize the Hopf bifurcations of this family.The first author is partially supported by a MINECO/FEDER grant MTM2008-03437 and MTM2013-40998-P, an AGAUR grant number 2014SGR-568, an ICREA Academia, the grants FP7-PEOPLE-2012-IRSES 318999 and 316338, and UNAB 13-4E-1604

    Simultaneous occurrence of sliding and crossing limit cycles in piecewise linear planar vector fields

    Get PDF
    In the present study we consider planar piecewise linear vector fields with two zones separated by the straight line x=0x=0. Our goal is to study the existence of simultaneous crossing and sliding limit cycles for such a class of vector fields. First, we provide a canonical form for these systems assuming that each linear system has center, a real one for y<0y<0 and a virtual one for y>0y>0, and such that the real center is a global center. Then, working with a first order piecewise linear perturbation we obtain piecewise linear differential systems with three crossing limit cycles. Second, we see that a sliding cycle can be detected after a second order piecewise linear perturbation. Finally, imposing the existence of a sliding limit cycle we prove that only one adittional crossing limit cycle can appear. Furthermore, we also characterize the stability of the higher amplitude limit cycle and of the infinity. The main techniques used in our proofs are the Melnikov method, the Extended Chebyshev systems with positive accuracy, and the Bendixson transformation.Comment: 24 pages, 7 figure

    Further considerations on the number of limit cycles of vector fields of the form X(v) = Av + f(v) Bv

    Get PDF
    AbstractIn Gasull, Llibre, and Sotomayor. (J. Differential Equations, in press) we studied the number of limit cycles of planar vector fields as in the title. The case where the origin is a node with different eigenvalues, which then resisted our analysis, is solved in this paper

    Quadratic vector fields with a weak focus of third order

    Get PDF
    We study phase portraits of quadratic vector fields with a weak focus of third order at the origin. We show numerically the existence of at least 20 different global phase portraits for such vector fields coming from exactly 16 different local phase portraits available for these vector fields. Among these 20 phase portraits, 17 have no limit cycles and three have at least one limit cycle
    corecore